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In this paper, the nonlinear dynamics of a beam-type resonant structure due to

stretching of the beam is addressed. The resonant beam is excited by attached

electrostatic comb-drive actuators. This structure is modeled as a thin beam-lumped

mass system, in which an initial axial force is exerted to the beam. This axial force may

equations of motion are derived using the mode summation method, generalized

orthogonality condition, and multiple scales method for both free and forced vibrations.

The effects of the initial axial force, modal damping of the beam, the location, mass, and

rotary inertia of the lumped mass on the free and forced vibration of the resonator are

investigated. For the case of the forced vibration, the primary resonance of the first

mode is investigated. It has been shown that there are certain combinations of the

model parameters depicting a remarkable dynamic behavior, in which the second to

first resonance frequencies ratio is close to three. These particular cases result in the

internal resonance between the first and second modes. This phenomenon is

investigated in detail.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Micro-resonators are the building blocks of many micro-electromechanical systems (MEMS), e.g., micro-gyroscopes and
resonant sensors. Due to the oscillatory nature of these devices, dynamics of micro-resonators has been an interesting
field for researchers. Among many different resonators, micro-bridges are one of the most frequently used structures.
A micro-bridge is essentially a beam clamped at both ends.

Fig. 1 shows a resonant micro-bridge with two attached comb-drives for the excitation and detection of vibration of the
resonant beam. This structure can be used for resonant sensing, because the natural frequencies of the beam are functions
of its axial load. One of the attached comb-drives is used to oscillate the resonator, while the other is for sensing the
vibration.

Fig. 2 shows the schematic of an electrostatic comb-drive actuator. The force applied to the beam laterally can be
expressed as [1]

F ¼
e0Nh

2g
V2; (1)
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Fig. 1. SEM of a resonant beam with attached comb-drives.

Fig. 2. Schematic of an electrostatic comb-drive actuator.
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where e0 is the permittivity of free space; N is the number of fingers; h is the MEMS structural layer thickness; g is the gap
between two consecutive stationary and mobile fingers; and V is the applied voltage. The electrostatic force usually ranges
from a few nano-Newtons to a few hundreds of micro-Newtons, depending on the dimensions of the structure.

In the device shown in Fig. 1, the comb-drives are located at the mid-point of the beam; therefore, the motion of the
system is symmetric with the main contribution from the fundamental mode of vibration. Hence, a single degree-of-
freedom model (SDOF), i.e., mass-spring-damper, can be used to model this system. The stiffness of the spring will be the
stiffness of the beam at the mid-point, i.e., k ¼ 192EI=L3 [1], while the mass will be the mass of the comb-drive. In those
cases where the mass of the beam is comparable to the mass of the combs, the beam’s effective mass can be taken into
account as well.

When the mass of the beam is large compared to the mass of the combs, or the natural frequencies and responses of the
system at higher modes of vibration is desired, SDOF models are no longer adequate. In these cases, a continuous model
should be used. Hassanpour et al. [2] assumed that the dimensions of the combs were small compared to those of the
beam; therefore, the combs could be modeled as a point mass, i.e., a mass with no rotary inertia. They also assumed that
the position of the point mass was arbitrary on the beam. Using the thin beam theory and considering the effect of the axial
force, they investigated the effect of axial force, mass ratio, and location on the natural frequencies and mode shapes of the
beam. These results showed that the rotation of the point mass was not negligible; hence, the effect of rotary inertia of
the combs must be taken into account, in general.

As an extension to their previous model, Hassanpour et al. [3] took into account the rotary inertia of the combs. They
showed that although the inertia of the resonator was increased by the mass of the comb-drives, its natural frequencies
could be higher than those of the original beam by properly positioning the combs on the resonant beam. This new
structure is called an asymmetric resonator [4]. It has been shown that the electrostatic comb-drives in an asymmetric
resonator are stable and robust to rocking motions, thanks to the resistance to rotation imposed to the beam by their rotary
inertia [3,4].

As mentioned earlier, many MEMS devices are based on dynamic effects. In some cases, these devices are controlled to
remain in the linear regime. In other cases, the nonlinearity is either desirable, or inevitable. Various forms of nonlinear
dynamic behavior have been already observed experimentally [5–12]. Bahreyni and Shafai [13] used a symmetric beam
with two attached comb-drives to measure the intensity of the magnetic field. They have observed that by increasing
the amplitude of vibration, the response of the system depicts nonlinear behavior [14]. This phenomenon can be explained
by noting that a large deflection causes the axial stretching of the beam, which in turn produces a tensile axial
force. Therefore, the magnitude of this axial force is a function of the amplitude of deflection. It must be noted that a
micro-bridge might be under an initial constant axial force, which can be either tensile or compressive.
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Ozkaya et al. [16,17] and Low [18] have investigated the nonlinear vibration of a thin beam carrying a point mass for the
boundary conditions of pinned–pinned, pinned–guided, guided–guided, pinned–clamped, and guided–clamped ends.
These studies include the application of the method of multiple scales for solving the nonlinear equations, while excluding
the effect of rotary inertia of the point mass as well as the effect of the initial axial force in the beam. Moreover, the first
five modes of linear vibration for different cases are calculated, however, only the fundamental mode has been used to
derive the nonlinear frequency versus amplitude of vibration. It has been shown that using exact higher modes requires
the application of the generalized orthogonality condition [19]. Ozkaya and Pakdemirli [21] have used the exact
fundamental mode shape of a beam-point mass system clamped at both ends. This study does not include the effect of the
rotary inertia of the mass and the initial axial force in the beam. Ozkaya [22] has modeled the nonlinear vibration of a
simply supported beam carrying several point masses at its interval, neglecting the initial axial force in the beam, rotary
inertia of the point masses, as well as the effect of second and higher modes in the nonlinear vibration. The nonlinear
vibrations of beams with non-ideal supports have been studied in Ref. [23]. The nonlinear dynamics of a stepped beam
has been studied in Ref. [24]. Ramezani et al. [25] have modeled the effects of rotary inertia and shear deformation of the
beam, itself, on nonlinear free vibration of micro-beams. Vyas et al. [26] have modeled the internal resonance between an
out-of-plane torsional mode and a flexural in-plane vibrating mode.

As mentioned earlier, the beam-lumped mass systems can be used as the building blocks of resonant sensors. In these
systems, the initial axial force in the beam is the key quantity to be measured, and cannot be neglected at all. Moreover, it
has been shown that this axial force along with the lumped mass ratio, radius of gyration, and location change the exact
mode shapes of vibration. These exact mode shapes are no longer orthogonal to each other under the conventional
definition of orthogonality, but a generalized form of orthogonality condition that takes into account the effects of the
lumped mass must be used. Due to the modification of the mode shapes of the beam-lumped mass system, the stretching
of the beam must be revisited as it is a function of the mode shapes. In addition, asymmetric beam-lumped mass systems
have a remarkable feature: frequency ratio tunability. The ratios between the natural frequencies of a beam are fixed, and
determined as soon as the boundary conditions of that beam are set. For example, the second to first natural frequency
ratio of a micro-bridge, i.e., a clamped–clamped beam, is approximately equal to 2.7565 regardless of its dimensions [27].
This ratio for a cantilever beam is roughly 6.2669 [27]. For a beam-lumped mass resonator, this ratio can be easily changed
by adjusting the properties of the lumped mass as well as the beam initial axial force. This feature brings a vast opportunity
to designers to exploit nonlinear dynamics in realizing innovative devices.

In this paper, the model of a beam-lumped mass system is adopted for studying the system of a micro-bridge with
attached electrostatic comb-drives. This model includes the effect of the initial axial force in the beam and stretching due
to large deflections. The nonlinear problem is formulated using the method of multiple scales. In contrast to previous
studies, first and higher modes of vibration are used by the application of the generalized orthogonality condition. The free
nonlinear vibration equation is solved to determine the shift of the natural frequencies in terms of the amplitude of
vibration. The primary resonance of the system is investigated, once for the general case, and once for those particular
cases in which the second natural frequency is tuned to be approximately three times of the fundamental natural
frequency. It has been shown that this particular situation triggers an internal resonance. For each section of the modeling,
the effects of contributing parameters are discussed in detail.

2. Analytical model

Fig. 3 shows the model of the resonant beam with electrostatic comb-drives for vibration excitation and detection.
Assuming that the beam carrying the axial force is straight initially, and neglecting its shear deformation and rotary inertia,
the governing equation of motion can be derived as [15,28]

rAŴ t̂ t̂ þMŴ t̂ t̂ ðLL; t̂Þd̂ðx̂ � LLÞ � JŴ x̂ t̂ t̂ ðLL; t̂Þd̂ 0ðx̂ � LLÞ � P̂Ŵ x̂x̂ þ EIŴ x̂x̂x̂ x̂

¼ ðEA� P̂Þ
q
qx̂

1

2L

Z L

0
Ŵ

2

x̂ dx̂

� �
Ŵ x̂

� �
þ Fðt̂Þd̂ðx̂ � LLÞ; (2)
Fig. 3. Model of a clamped–clamped beam with attached lumped mass.
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where r is the density, E is the modulus of elasticity, A is the cross sectional area, I is the second area moment, Ŵ ðx̂; t̂Þ is the
deflection, and P̂ is the initial axial force in the beam. Parameters M, J, and LL are, respectively, the mass, rotary inertia, and
location of the lumped mass representing the comb-drives. Fðt̂Þ is the electrostatic excitation force. The subscripts t̂ and x̂

represent the derivation with respect to time and space, respectively. The prime also shows the spatial derivative. It is
more appropriate to express Eq. (2) in dimensionless form, i.e.,

Wtt þ mWttðx; tÞdðx� xÞ � mZ2Wxttðx; tÞd0ðx� xÞ � 2PWxx þWxxxx ¼
1

2r2
ð1� 2r2PÞ Wxx

Z 1

0
W2

x dx

" #
þ fdðx� xÞ; (3)

where

W ¼
Ŵ

L
; t ¼

t̂

L2

ffiffiffiffiffiffiffi
EI

rA

s
;

x ¼
x̂

L
; P ¼

P̂L2

2EI
;

x ¼
LL

L
; m ¼ M

rAL
;

r ¼

ffiffiffiffiffiffiffiffi
I

AL2

s
; Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J

mrAL3

s
;

f ¼
FL3

EI
:

The deflection of the resonant beam can be expanded using the assumed modes method, i.e.,

Wðx; tÞ ¼ rk
X1
m¼1

umðtÞYmðxÞ; (4)

where k is an arbitrary real number larger than one [15]. YmðxÞ and umðtÞ are the m th normal mode and the m th
generalized coordinate, respectively. The mode Ym is the solution of spatial differential equation of the corresponding
linear model [19], i.e.,

o2
m½YmðxÞ þ mYmðxÞdðx� xÞ � mZ2Ym

0 ðxÞd0ðx� xÞ� ¼ Y ðivÞm ðxÞ � 2PYm
00 ðxÞ; (5)

where om is the m th dimensionless natural frequency. It is defined in terms of the m th physical natural frequency, ôm, as

om ¼ ômL2

ffiffiffiffiffiffiffi
rA

EI

r
: (6)

Two distinct mode shapes Ym and Yn must satisfy the generalized orthogonality condition (see Refs. [19,20]), which can be
expressed in dimensionless form asZ 1

0
YmðxÞYnðxÞdxþ mYmðxÞYnðxÞ þ mZ2Ym

0 ðxÞYn
0 ðxÞ ¼ 0 if man: (7)

Moreover, mode shapes can be made orthonormal; hence, for the case m ¼ n,Z 1

0
Y2

m dxþ mY2
mðxÞ þ mZ

2Y 02mðxÞ ¼ 1: (8)

By substituting Eq. (4) into Eq. (3), one can show that

rk
X1
m¼1

€um½YmðxÞ þ mYmðxÞdðx� xÞ � mZ2Ym
0 ðxÞd0ðx� xÞ� þ

X1
m¼1

um½�2PYm
00 ðxÞ þ Y ðivÞm ðxÞ�

( )

¼
r3k�2

2
ð1� 2r2PÞ

X1
m¼1

umYm
00

 !Z 1

0

X1
p¼1

upYp
0

 ! X1
q¼1

uqYq
0

 !
dx

" #
þ fdðx� xÞ: (9)

Eq. (9) can be simplified as

X1
m¼1

ð €um þo2
mumÞ½YmðxÞ þ mYmðxÞdðx� xÞ � mZ2Ym

0 ðxÞd0ðx� xÞ�

¼
r2ðk�1Þ

2
ð1� 2r2PÞ

X1
m¼1

umYm
00

 ! X1
p¼1

X1
q¼1

upuq

Z 1

0
Yp
0 Yq
0 dx

 !" #
þ fdðx� xÞ: (10)
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By multiplying Eq. (10) by Yn, integrating over the range of x, i.e., ½0;1�; and using Eqs. (7) and (8) as well as the definitions
of Dirac’s delta function, dðx� xÞ, and the doublet, d0ðx� xÞ, Eq. (10) can be rewritten as

€un þo2
nun ¼

r2ðk�1Þ

2
ð1� 2r2PÞ

X1
m¼1

um

Z 1

0
Ym
00 Yn dx

 !
�

X1
p¼1

X1
q¼1

upuq

Z 1

0
Yp
0 Yq
0 dx

 !" #
þ

Z 1

0
fYndðx� xÞdx: (11)

Using integration by parts, one can show thatZ 1

0
Ym
00 Yn dx ¼ YmYn

0 j10 �

Z 1

0
Ym
0 Yn
0 dx ¼ �

Z 1

0
Ym
0 Yn
0 dx: (12)

Consequently, the term in the bracket at the right side of Eq. (11) can be expressed in terms of Gmnpq, which is defined as

Gmnpq ¼
1

2
ð1� 2r2PÞ

Z 1

0
Ym
00 Yn dx

 ! Z 1

0
Yp
0 Yq
0 dx

 !

¼ �
1

2
ð1� 2r2PÞ

Z 1

0
Ym
0 Yn
0 dx

 ! Z 1

0
Yp
0 Yq
0 dx

 !
ðfrom Eq: ð12ÞÞ: (13)

By inspecting Eq. (13), the following identity can be concluded:

Gmnpq ¼ Gnmpq ¼ Gmnqp ¼ Gpqmn: (14)

Furthermore, the definition of Dirac’s delta function implied that

fn ¼

Z 1

0
fYndðx� xÞdx ¼ fYnðxÞ: (15)

Letting e ¼ r2ðk�1Þ, Eq. (11) can be rewritten in a compact form as

€un þo2
nun ¼ e

X1
m¼1

X1
p¼1

X1
q¼1

umupuqGnmpq þ fn ðn ¼ 1;2;3; . . .Þ: (16)

For those cases with damping, Eq. (16) can be extended by adding the modal damping term, �2ezn _un, to the right side of it,
i.e.,

€un þo2
nun ¼ e

X1
m¼1

X1
p¼1

X1
q¼1

umupuqGnmpq � 2zn _un

" #
þ fn ðn ¼ 1;2;3; . . .Þ (17)

2.1. Free vibration

The stretching of a resonant beam, due to a large deflection, can shift the frequencies at which the beam vibrates. The
extent of frequency shift depends on the initial condition of the beam oscillation. This phenomenon can be investigated
using the governing equation of motion, Eq. (17), for the special case of undamped free vibration, i.e., zn ¼ 0 and fn ¼ 0, i.e.,

€un þo2
nun ¼ e

X1
m¼1

X1
p¼1

X1
q¼1

umupuqGnmpq: (18)

Application of the method of multiple scales implies that un can be expanded in the form of a power series in e:

un ¼ un0 þ eun1 þ Oðe2Þ: (19)

Time scales are defined as

T0 ¼ t (20)

and

T1 ¼ et; (21)

where T0 and T1 are called fast time and slow time, respectively. The operators representing the differentiation with respect
to the time scales are defined as

D0 ¼
q
qT0

(22)

and

D1 ¼
q
qT1

: (23)
Consequently,

d

dt
¼ D0 þ eD1; (24)
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d2

dt2
¼ D2

0 þ 2eD0D1: (25)

Substituting Eqs. (19) and (25) into Eq. (18), one can show that

ðD2
0 þ 2eD0D1Þðun0 þ eun1Þ þo2

nðun0 þ eun1Þ ¼ e
X1

m;p;q¼1

um0up0uq0Gnmpq: (26)

Collecting powers of e yields a set of two differential equations for every mode n:
Order e0:

D2
0un0 þo2

nun0 ¼ 0: (27)

Order e1:

D2
0un1 þo2

nun1 ¼ �2D0D1un0 þ
X1

m;p;q¼1

um0up0uq0Gnmpq: (28)

The solution of Eq. (27) is

un0 ¼ AnðT1ÞexpðionT0Þ þ cc; (29)

where the amplitude An is a complex function of slow time, and cc represents the complex conjugates of the preceding
terms. Substituting Eq. (29) into Eq. (28), one obtains

D2
0un1 þo2

nun1 ¼ �2ionD1AnexpðionT0Þ

þ
X1

m;p;q¼1

GnmpqfAmApAqexp½iðom þop þoqÞT0� þ AmApAqexp½ið�om þop þoqÞT0�

þ AmApAqexp½iðom �op þoqÞT0� þ AmApAqexp½iðom þop �oqÞT0�g þ cc: (30)

The bar in this equation represents the complex conjugate of its corresponding parameter. The secular terms in Eq. (30)
must be set to zero to ensure that the particular solution of un1 is bounded. Those conditions resulting in secular terms are
listed below:

om ¼ on and op ¼ oqaon ) m ¼ n; p ¼ qan ð2� p termsÞ;

op ¼ on and om ¼ oqaon ) p ¼ n;m ¼ qan ð2�m termsÞ;

oq ¼ on and om ¼ opaon ) q ¼ n;m ¼ pan ð2�m termsÞ

and

om ¼ op ¼ oq ¼ on ) m ¼ p ¼ q ¼ n ð3 termsÞ:

Considering Eq. (14), the above condition can be satisfied if

�2ionAn
0 þ

X1
m¼1
man

AnAmAmð4Gnmnm þ 2GnnmmÞ þ 3A2
nAnGnnnn ¼ 0: (31)

Noting that An is a complex function of the slow time, it can be expressed in polar form, in which the modulus and
argument are functions of the slow time, i.e.,

AnðT1Þ ¼
1
2anðT1Þexp½ibnðT1Þ�: (32)

Therefore, the differentiation of An with respect to T1 can be expressed as

An
0 ðT1Þ ¼

1
2 an
0 expðibnÞ þ

1
2ianbn

0 expðibnÞ: (33)

Substituting Eqs. (32) and (33) into Eq. (31), one can show that

�2ion
1

2
an
0 expðibnÞ þ

1

2
ianbn

0 expðibnÞ

� �
þ

1

2
anexpðibnÞ

X1
m¼1
man

1

4
a2

mð4Gnmnm þ 2GnnmmÞ þ
3

8
a3

nexpðibnÞGnnnn ¼ 0: (34)

Canceling out the exponential terms, collecting the real and imaginary terms, and then setting them to zero, Eq. (34) leads
to

onan
0 ¼ 0 (35)

and

onanbn
0 þ

1

2
an

X1
m¼1
man

a2
m Gnmnm þ

1

2
Gnnmm

� �
þ

3

8
a3

nGnnnn ¼ 0: (36)
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on is nonzero; hence, Eq. (35), implies that an
0 ¼ 0. Therefore, an ¼ an0 ¼ const. Eq. (36) can be solved for bn

0 :

bn
0 ¼ �

1

on

1

2

X1
m¼1
man

a2
m0 Gnmnm þ

1

2
Gnnmm

� �
þ

3

8
a2

n0Gnnnn

2
4

3
5: (37)

The right side of Eq. (37) is constant; hence, this equation can be easily integrated with respect to T1, i.e.,

bn ¼ �
eT0

on

1

2

X1
m¼1
man

a2
m0 Gnmnm þ

1

2
Gnnmm

� �
þ

3

8
a2

n0Gnnnn

2
4

3
5þ bn0; (38)

where T1 is replaced by its equivalent expression eT0. Substituting for an and bn from the above equations into Eq. (32) and
then Eq. (29), un0 can be expressed as

un0 ¼
1

2
an0exp½iðonT0 þ bnÞ� þ cc

¼
1

2
an0exp i on �

e
on

1

2

X1
m¼1
man

a2
m0 Gnmnm þ

1

2
Gnnmm

� �
þ

3

8
a2

n0Gnnnn

0
@

1
A

2
4

3
5T0 þ ibn0

8<
:

9=
;þ cc: (39)

The nonlinear resonance frequency can be found by inspecting the coefficient of T0 in the argument of un0 in Eq. (39),
yielding

on;nonlinear ¼ on �
e
on

1

2

X1
m¼1
man

a2
m0 Gnmnm þ

1

2
Gnnmm

� �
þ

3

8
a2

n0Gnnnn

2
4

3
5: (40)

2.2. Primary resonance

In most cases, resonators operate in the forced vibration mode. When the frequency of excitation is close to one of the
natural frequencies of a resonator, primary resonance occurs. The linear vibration theory states that the resonance
frequency is robust and independent of excitation. In addition, for very small damping ratios, the amplitude of vibration
becomes extremely large, if not infinite. In contrast, as will be shown later, nonlinear analysis indicates that if the
excitation, damping, and nonlinear restoring forces are of the same order, the resonance frequency will be a function of
the frequency of excitation, and the amplitude of vibration will be bounded. For the primary resonance condition, the
excitation force is assumed to be of the following form:

f ¼ 2ef0cosðOtÞ; (41)

where O is the excitation frequency. The force amplitude is scales by e to satisfy the primary resonance condition. Using Eq.
(15), fn can be expressed as

fn ¼ fYnðxÞ ¼ 2ef0YnðxÞcosðOtÞ: (42)

For the case of the excitation frequency being close to the fundamental natural frequency, O can be expressed as

O ¼ o1 þ es1; (43)

where s1 indicates the difference between the excitation frequency and the fundamental natural frequency of the
resonator. Substituting Eq. (42) into Eq. (17), the governing equation of motion can be reformulated as

€un þo2
nun ¼ e

X1
m;p;q¼1

umupuqGnmpq � 2zn _un

" #
þ 2ef0YnðxÞcosðOtÞ: (44)

By a similar approach presented in Section 2.1, and using Eqs. (18)–(25), (44) can be transformed into

ðD2
0 þ 2eD0D1Þðun0 þ eun1Þ þo2

nðun0 þ eun1Þ ¼ e
X1

m;p;q¼1

um0up0uq0Gnmpq � 2znðD0 þ eD1Þðun0 þ eun1Þ

" #

þ 2ef0YnðxÞcosðOtÞ: (45)

Collecting the powers of e yields a set of two differential equations for each mode n:
Order e0:

D2
0un0 þo2

nun0 ¼ 0: (46)

Order e1:

D2
0un1 þo2

nun1 ¼ �2D0D1un0 � 2znD0un0 þ
X1

m;p;q¼1

um0up0uq0Gnmpq þ 2f0YnðxÞcosðOtÞ: (47)



ARTICLE IN PRESS

P.A. Hassanpour et al. / Journal of Sound and Vibration 329 (2010) 2547–25642554
As shown in Section 2.1, Eq. (46) has a solution of the form of Eq. (32). Eq. (42) can be expressed in polar form, i.e.,

fn ¼ ef0YnðxÞexpðiOtÞ þ cc: (48)

Substituting Eqs. (32) and (48) into Eq. (47), leads to

D2
0un1 þo2

nun1 ¼ �2ionD1AnexpðionT0Þ � 2iznonAnexpðionT0Þ þ f0YnðxÞexpðiOT0Þ

þ
X1

m;p;q¼1

GnmpqfAmApAqexp½iðom þop þoqÞT0� þ AmApAqexp½ið�om þop þoqÞT0�

þ AmApAqexp½iðom �op þoqÞT0� þ AmApAqexp½iðom þop �oqÞT0�g þ cc: (49)

Seeking bounded solutions when t approaches to infinity, the secular terms in Eq. (49) must be eliminated. However,
whether a particular term is secular or not, depends on higher natural frequencies of the resonator. In general, the ratio of
the second to first natural frequency depends on the design of the resonant beam, particularly, on the mass ratio, rotary
inertia, location of comb-drive, and the initial axial force in the beam. When the frequency ratio is close to three, the set
of secular terms differs from those of cases in which this ratio is any other number. The special case of o2 � 3o1 is one of
those several cases resulting in a phenomenon known as the internal resonance, which will be investigated later.

2.2.1. Primary resonance with no internal resonance

When o2i3o1, the secular terms in Eq. (49) that are associated with the summation operator term can be listed as
follows:

om ¼ on and op ¼ oqaon ) m ¼ n; p ¼ qan ð2� p termsÞ;

op ¼ on and om ¼ oqaon ) p ¼ n;m ¼ qan ð2�m termsÞ;

oq ¼ on and om ¼ opaon ) q ¼ n;m ¼ pan ð2�m termsÞ

and

om ¼ op ¼ oq ¼ on ) m ¼ p ¼ q ¼ n ð3 termsÞ:

Consequently, for n ¼ 1, the condition that eliminates the secular terms from Eq. (49) can be expressed as

�2io1ðA1
0 þ z1A1Þ þ f0Y1ðxÞexpðis1T1Þ þ A1

X1
m¼2

AmAmð4G1m1m þ 2G11mmÞ þ 3A2
1A1G1111 ¼ 0: (50)

Similarly, for nZ2, the following condition cancels out the unbounded solutions:

�2ionðAn
0 þ znAnÞ þ An

X1
m¼1
man

AmAmð4Gnmnm þ 2GnnmmÞ þ 3A2
nAnGnnnn ¼ 0: (51)

By substituting Eqs. (32) and (33) into Eqs. (50) and (51), one obtains for n ¼ 1:

�2io1 �
1

2
ða1
0 þ ia1b1

0 þ z1a1Þ þ f0Y1ðxÞexp½iðs1T1 � b1Þ� þ
1

2
a1

X1
m¼2

1

4
a2

mð4G1m1m þ 2G11mmÞ þ
3

8
a3

1G1111 ¼ 0; (52)

and for nZ2:

�2ion �
1

2
ðan
0 þ ianbn

0 þ znanÞ þ
1

2
an

X1
m¼1
man

1

4
a2

mð4Gnmnm þ 2GnnmmÞ þ
3

8
a3

nGnnnn ¼ 0: (53)

By collecting the real and imaginary terms, two equations can be derived from Eq. (52), i.e.,

�o1ða1
0 þ z1a1Þ þ f0Y1ðxÞsinðs1T1 � b1Þ ¼ 0 (54)

and

o1a1b1
0 þ f0Y1ðxÞcosðs1T1 � b1Þ þ

1

2
a1

X1
m¼2

a2
m G1m1m þ

1

2
G11mm

� �
þ

3

8
a3

1G1111 ¼ 0: (55)

Similarly, Eq. (53) results in two equations:

�onðan
0 þ znanÞ ¼ 0 (56)

and

onanbn
0 þ

1

2
an

X1
m¼1
man

a2
m Gnmnm þ

1

2
Gnnmm

� �
þ

3

8
a3

nGnnnn ¼ 0: (57)

Seeking a steady-state condition implies that

a1
0 ¼ an

0 ¼ 0 (58)
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and

s1T1 � b1 ¼ const: (59)

By substituting Eq. (58) into Eq. (56), one concludes that an ¼ 0 ðnZ2Þ. Moreover, by differentiating Eq. (59) with respect to
T1, one obtains b1

0 ¼ s1. Letting g1 ¼ s1T1 � b1, Eqs. (54) and (55) can be simplified as

z1o1a1 ¼ f0Y1ðxÞsing1;

o1a1s1 þ f0Y1ðxÞcosg1 þ
3

8
a3

1G1111 ¼ 0;

8<
: (60)

from which, a1 and g1 can be found as functions of s1.

2.2.2. Primary resonance with internal resonance

As mentioned in Section 2.2, when the second natural frequency is approximately three times of the first natural
frequency, i.e., o2 � 3o1 and the excitation frequency is close to the first natural frequency, i.e., O � o1, internal
resonance occurs, i.e., the amplitude of the second mode of vibration shows resonance behavior. These conditions can be
stated mathematically as follows:

o2 ¼ 3o1 þ es1 (61)

and

O ¼ o1 þ es2: (62)

Using Eqs. (61) and (62) the secular terms in Eq. (49) that are associated with the summation operator term can be listed as

om ¼ on and op ¼ oqaon ) m ¼ n;p ¼ qan ð2� p termsÞ;

op ¼ on and om ¼ oqaon ) p ¼ n;m ¼ qan ð2�m termsÞ;

oq ¼ on and om ¼ opaon ) q ¼ n;m ¼ pan ð2�m termsÞ

and

om ¼ op ¼ oq ¼ on ) m ¼ p ¼ q ¼ n ð3 termsÞ:

Hence, the equations that eliminate unbounded terms from Eq. (49) can be derived as
For n ¼ 1:

�2io1ðA1
0 þ z1A1Þ þ f0Y1ðxÞexpðis2T1Þ þ A1

X1
m¼2

AmAmð4G1m1m þ 2G11mmÞ þ 3A2
1A1G1111 þ 3A2A

2

1G2111expðis1T1Þ

¼ 0: (63)

For n ¼ 2:

�2io2ðA2
0 þ z2A2Þ þ A2

X1
m¼1
ma2

AmAmð4G2m2m þ 2G22mmÞ þ 3A2
2A2G2222 þ A3

1G2111expð�is1T1Þ ¼ 0: (64)

For nZ3:

�2ionðAn
0 þ znAnÞ þ An

X1
m¼1
man

AmAmð4Gnmnm þ 2GnnmmÞ þ 3A2
nAnGnnnn ¼ 0: (65)

Letting g1 ¼ s1T1 � 3b1 þ b2 and g2 ¼ s2T1 � b1, and then substituting Eqs. (32) and (33) into Eqs. (63)–(65), one obtains
For n ¼ 1:

�2io1 �
1

2
ða1
0 þ ia1b1

0 þ z1a1Þ þ f0Y1ðxÞexpðig2Þ þ
1

8
a1

X1
m¼2

a2
mð4G1m1m þ 2G11mmÞ þ

3

8
a3

1G1111 þ
3

8
a2

1a2G2111expðig1Þ ¼ 0: (66)

For n ¼ 2:

�2io2 �
1

2
ða2
0 þ ia2b2

0 þ z2a2Þ þ
1

8
a2

X1
m¼1
ma2

a2
mð4G2m2m þ 2G22mmÞ þ

3

8
a3

2G2222 þ
1

8
a3

1G2111expð�ig1Þ ¼ 0: (67)

For nZ3:

�2ion �
1

2
ðan
0 þ ianbn

0 þ znanÞ þ
1

8
an

X1
m¼1
man

a2
mð4Gnmnm þ 2GnnmmÞ þ

3

8
a3

nGnnnn ¼ 0: (68)
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By collecting real and imaginary terms and setting them to zero, two equations can be derived from each equations above;
therefore, from Eq. (68), one concludes that

an
0 þ zan ¼ 0 ðnZ3Þ: (69)

For nZ1, an
0 ¼ 0 due to imposing the steady-state condition. Therefore, from Eq. (69), an ¼ 0 for nZ3. The two equations

derived from Eq. (66) are

�o1ða1
0 þ z1a1Þ þ f0Y1ðxÞsing2 þ

3
8a2

1a2G2111sing1 ¼ 0; (70)

o1a1b1
0 þ f0Y1ðxÞcosg2 þ

3
8 a3

1G1111 þ
1
8 a1a2

2ð4G1212 þ 2G1122Þ þ
3
8a2

1a2G2111cosg1 ¼ 0: (71)

Similarly, the two equations derived from Eq. (67) are

�o2ða2
0 þ z2a2Þ �

1
8a3

1G2111sing1 ¼ 0; (72)

o2a2b2
0 þ 3

8 a3
2G2222 þ

1
8 a2

1a2ð4G2121 þ 2G2211Þ þ
1
8a3

1G2111cosg1 ¼ 0: (73)

The steady-state condition implies that a1
0 ¼ a2

0 ¼ 0 and g1
0 ¼ g2

0 ¼ 0; hence, b1
0 ¼ s2 and b2

0 ¼ 3s2 � s1. Therefore,

�o1z1a1 þ f0Y1ðxÞsing2 þ
3

8
a2

1a2G2111sing1 ¼ 0;

o1s1a1 þ f0Y1ðxÞcosg2 þ
3

8
a3

1G1111 þ
1

8
a1a2

2ð4G1212 þ 2G1122Þ þ
3

8
a2

1a2G2111cosg1 ¼ 0;

o2z2a2 þ
1

8
a3

1G2111sing1 ¼ 0;

o2ð3s2 � s1Þa2 þ
3

8
a3

2G2222 þ
1

8
a2

1a2ð4G2121 þ 2G2211Þ þ
1

8
a3

1G2111cosg1 ¼ 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

(74)

Eq. (74) can be solved for a1, a2, g1, and g2 as functions of s1 and s2.

3. Results

In this section, the numerical results of the modeling are presented. First, the effect of the stretching of the beam on the
free vibration of beam-mass systems is discussed. Then, the nonlinear primary resonance of some beam-lumped mass
systems, in which the natural frequencies do not satisfy the condition for internal resonance, are presented. Finally, two
cases in which internal resonance occur, are discussed in detail.

3.1. Free vibration

Eq. (40) provides the frequency of the free vibration of a beam-lumped mass system as a function of the linear natural
frequency, initial axial force, and initial modal displacements, am0. In Fig. 4, the nonlinear frequency of vibration is plotted
versus the initial modal displacement of the first mode, a10, for different number of modes. It has been assumed that
e ¼ 0:01, m ¼ 1, Z ¼ 1, x ¼ 0:4, and P ¼ 0. The vertical axis of Fig. 4 is the initial amplitude of the first mode. To be more
realistic, it is assumed that the amplitudes of higher modes are reduced by a factor of 10, i.e., a20 ¼ 0:1a10, a30 ¼ 0:1a20, and
so on. Although the amplitudes of higher modes are reduced, this figure reveals that these modes have a significant effect
on the frequency of free vibration of the system, and cannot be neglected as previous studies suggest [16,17,21–24].

Tables 1 and 2 present the first four natural frequencies and the nonlinear frequencies of the free vibration of six
illustrative cases. The initial displacements are assumed equal to 10, i.e., am0 ¼ 10, which are practically very large
displacements. The reason for choosing these large amplitudes is to achieve large differences between the linear and
nonlinear natural frequencies, which enable us to investigate the effect of other parameters. The first three cases
correspond to a single asymmetric resonator with tensile, compressive, and zero initial axial forces. The difference between
the nonlinear free vibration frequency and the natural frequency at each mode indicates the influence of the stretching
on the vibration frequency. These cases reveal that the difference between linear and nonlinear free vibration frequencies
for a beam under compressive axial force is significantly greater than those of cases with zero or tensile axial force, even
when the magnitude of the tensile axial force is several times larger than the compressive force. It must be noted that the
maximum allowable compressive axial force is P ¼ �2p2, which is the theoretical buckling force [29]. This difference can
be explained by noting that the stretching effect induces a tensile axial force, which will be superimposed to the initial
axial force in the beam, and subsequently, will change the effective axial force. The higher sensitivity of a beam-lumped
mass system under initial compressive axial force to the stretching is in agreement with earlier findings that suggest these
systems, when used as force sensors, depict more sensitivity to the change of axial force [3].

Case 4 is a symmetric resonator which will be studied for the primary resonance later in this paper. This case can be
compared with case 1, which is similar except in the mass location. It can be observed that the symmetric beam-lumped
mass system shows higher sensitivity to the stretching at the first mode only, while the asymmetric system is more
sensitive at higher modes. This can be referred to the different mode shapes of the system and their effects on the
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Fig. 4. The fundamental frequency of free vibration of a beam-lumped mass system with m ¼ 1, Z ¼ 1, x ¼ 0:4, and P ¼ 0 as a function of the initial

displacement for different number of included modes: first mode (dashed), first two modes (square-line), first three modes (circle-line), first four modes

(triangle-line), and first five modes (solid).

Table 1
First and second nonlinear natural frequencies of vibration of a clamped–clamped beam with lumped mass.

Case no. P x m Z o1 o1;nonlinear o2 o2;nonlinear

1 0 0.25 1 1 23.21 42.80 42.79 102.09

2 100 0.25 1 1 38.03 46.79 81.23 104.12

3 �18 0.25 1 1 18.87 49.34 30.57 118.60

4 0 0.5 1 1 11.82 39.20 89.40 144.26

5 0 0.32 1 1.31 16.95 36.97 50.85 101.44

6 25 0.33 1 0.8 21.41 35.66 65.07 102.31

Table 2
Third and fourth nonlinear natural frequencies of vibration of a clamped–clamped beam with lumped mass.

Case no. P x m Z o3 o3;nonlinear o4 o4;nonlinear

1 0 0.25 1 1 111.96 190.70 217.20 315.78

2 100 0.25 1 1 170.60 211.27 287.42 347.26

3 �18 0.25 1 1 97.40 192.12 201.88 312.12

4 0 0.5 1 1 95.76 155.73 246.66 336.77

5 0 0.32 1 1.31 135.76 209.53 223.49 281.34

6 25 0.33 1 0.8 157.34 218.56 224.12 274.30
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stretching. In cases 5 and 6, the ratio of the second to the first natural frequencies is close to 3. These cases will be
investigated later in the internal resonance of beam-lumped mass systems.
3.2. Primary resonance, non-internal resonance

In this section, the results of the primary resonance of three beam-lumped mass systems will be presented for those
cases not resulting in an internal resonance. For all cases, the amplitude of excitation is assumed to be f0 ¼ 1. Fig. 5 shows
the frequency response amplitude of a symmetric beam-lumped mass system with x ¼ 0:5, m ¼ 1, Z ¼ 1, z ¼ 0:01 for
various axial forces. It can be observed that the system with compressive axial force shows more sensitivity to the
stretching in primary resonance. Moreover, the system with tensile axial force shows the least deviation from linear
behavior. This observation is in agreement with that of free vibration study.

Fig. 6 shows the frequency response of three beam-lumped mass systems with different mass locations. As shown, the
symmetric system depicts the largest response amplitude, while the response for x ¼ 0:2 is the smallest one. This
difference can be explained by noting that the amplitude of excitation is equal for all these cases, but the mode shape of a
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Fig. 5. The primary resonance of a symmetric beam-lumped mass system with m ¼ 1, Z ¼ 1, x ¼ 0:5, and z ¼ 0:01, for different axial forces, P ¼ �5 (solid),

P ¼ 0 (dashed), and P ¼ 5 (dashed-dotted).

Fig. 6. The primary resonance of different beam-lumped mass systems with m ¼ 1, Z ¼ 1, P ¼ 0, and z ¼ 0:01, for different lumped mass locations, x ¼ 0:2

(solid), x ¼ 0:3 (dashed), and x ¼ 0:5 (dashed-dotted).
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symmetric system shows larger deflection at the point where excitation is applied. Therefore, it can be concluded that an
asymmetric system is less prone to stretching effects.

The effect of rotary inertia on the nonlinear behavior of a beam-lumped mass system is shown in Fig. 7. As depicted,
when the radius of gyration is zero, the amplitude of the response is less than those of cases with nonzero radii of gyration.
This can be addressed by noting that the rotary inertia significantly changes the mode shape of vibration, and hence the
effect of stretching.

The effect of damping ratio on the nonlinear response of a beam-lumped mass system can be found in Fig. 8. As
expected, by increasing the damping ratio, the nonlinear response vanishes.

3.3. Primary resonance, internal resonance

In this section, the results of the internal resonance of beam-lumped mass systems will be presented for cases 5 and 6 in
Tables 1 and 2. The ratio of the second to first natural frequencies of case 5 is 3.000005, which indicates that this resonator
is prone to internal resonance. Fig. 9 shows the amplitude of the second mode, a2, when the beam is excited at the first
natural frequency. This figure is significant for showing a resonance peak at the second mode, while the excitation
frequency is close to the resonance frequency of the first mode. It can be observed that the internal resonance occurs only
for extremely small damping ratios, and even the damping ratio of z ¼ 0:01, which is practically small, diminishes the
internal resonance. Although these small damping ratios are rarely observed in macro-systems, damping ratios of the order
of 10�4 are common for micro-systems with very high quality factors. In addition, measuring very small amplitudes of
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Fig. 7. The primary resonance of different beam-lumped mass systems with m ¼ 1, x ¼ 0:3, P ¼ 0, and z ¼ 0:01, for different lumped mass radius of

gyrations, Z ¼ 0 (solid), Z ¼ 0:5 (dashed), and Z ¼ 1 (dashed-dotted).

Fig. 8. The primary resonance of a symmetric beam-lumped mass system with m ¼ 1, Z ¼ 1, x ¼ 0:5, and P ¼ 0, for different damping ratios, z ¼ 0:005

(solid), z ¼ 0:01 (dashed), and z ¼ 0:1 (dashed-dotted).
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vibration with high resolution is practical, thanks to the development of Laser Doppler Velocimetry techniques. The
response of the first mode at the internal resonance for the damping ratio of z ¼ 0:001 is shown in Fig. 10. Noting the
vertical axis of this diagram, one concludes that the variations of a1 are very small, though nonzero. For each damping ratio,
the curve of a1 is normalized by subtracting the minimum of the curve from itself, Fig. 11. This figure shows that by
increasing the damping ratio, the variations of a1 are decreased. The parameters g1 and g2, which are used for finding the
phase of response are plotted in Figs. 12–14. It must be noted that Fig. 13 is similar to Fig. 10 in the sense that its variations
are small. Moreover, the curves in Fig. 14 are normalized with a similar procedure as in Fig. 11.

The second to first frequency ratio of case 6 is 3.039575. Fig. 15 depicts the amplitude of the second mode of case 6 at
internal resonance. Similar to Fig. 9, increasing the damping ratio decreases the effect of the nonlinearity. Moreover, by
comparing the maximums of the curves in these two figures, one concludes that the nonlinear response in case 6, in which
a tensile axial force is applied, is significantly less than that of case 5. The same conclusion can be drawn about the
amplitude of the first mode, Fig. 16 versus Fig. 10, and its variation, Fig. 17 versus Fig. 11. This conclusion is in agreement
with the findings of the free vibration investigation. The curves of g1 in Fig. 18, on the other hand, are very similar to those
of Fig. 12, and show a 1803 change in phase at resonance.

By comparing Fig. 19, in which g2 for the case of z ¼ 0:001 is plotted, with Fig. 13, one can confirm that the variation is
reduced due to the tensile axial force. The normalized curves of g2 for different damping ratios are plotted in Fig. 20. It is
noticeable that the variations in these curves are one order of magnitude smaller than those of Fig. 14.
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Fig. 9. The amplitude of the second mode, a2, at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 1:31, x ¼ 0:32, and

P ¼ 0, for different damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).

Fig. 10. The amplitude of the first mode, a1, at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 1:31, x ¼ 0:32, P ¼ 0,

and z ¼ 0:001.

Fig. 11. The relative amplitude of the first mode, a1, at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 1:31,

x ¼ 0:32, and P ¼ 0, for different damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).
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Fig. 12. The phase g1 at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 1:31, x ¼ 0:32, and P ¼ 0, for different

damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).

Fig. 13. The phase g2 at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 1:31, x ¼ 0:32, P ¼ 0, and z ¼ 0:001.

Fig. 14. The relative phase g2 at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 1:31, x ¼ 0:32, and P ¼ 0, for

different damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).
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Fig. 15. The amplitude of the second mode, a2, at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 0:8, x ¼ 0:33, and

P ¼ 25, for different damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).

Fig. 16. The amplitude of the first mode, a1, at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 0:8, x ¼ 0:33, and

P ¼ 25, and z ¼ 0:001.

Fig. 17. The relative amplitude of the first mode, a1, at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 0:8, x ¼ 0:33,

and P ¼ 25, for different damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).
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Fig. 18. The phase g1 at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 0:8, x ¼ 0:33, and P ¼ 25, for different

damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).

Fig. 19. The phase g2 at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 0:8, x ¼ 0:33, and P ¼ 25, and z ¼ 0:001.

Fig. 20. The relative phase g2 at the internal resonance of an asymmetric beam-lumped mass system with m ¼ 1, Z ¼ 0:8, x ¼ 0:33, and P ¼ 25, for

different damping ratios, z ¼ 0:001 (solid), z ¼ 0:005 (dashed), and z ¼ 0:01 (dashed-dotted).
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4. Conclusions

The dynamics of a micro-bridge with attached electrostatic comb-drives is studied in this paper. When the deflection of
the micro-bridge is comparable with its size, the system shows nonlinear behavior. A thin beam model, which also takes
into account the effects of the modal damping, and initial axial force in the beam as well as mass, location, and rotary
inertia of the electrostatic comb-drives, is used to investigate free and forced nonlinear vibrations. For asymmetric
resonators, i.e., resonators in which the electrostatic comb-drives are closer to either beam ends, certain combinations of
the above parameters can be found that generate internal resonance between different modes. It is observed that a tensile
initial axial force reduces the nonlinearity due to a large deflection, while a compressive axial force amplifies the
nonlinearity. The results of this paper can be applied in the design of micromachined resonant sensors with enhanced
sensitivity.
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